Teles G. Rodrigues J. J. Rab R. A. Kozlov S. A. 2020. Artificial neural network and Bayesian network models for

Teles, G., Rodrigues, J. J., Rabê, R. A., & Kozlov, S. A. (2020). Artificial neural network and Bayesian network models for credit risk prediction. Journal of Artificial Intelligence and Systems, 2, 118-132.
Lakhani, M., Dhotre, B., & Giri, S. (2019). Prediction of credit risks in lending bank loans using machine learning. SAARJ Journal on Banking & Insurance Research, 8(1), 55-61.
Sun, T., & Vasarhelyi, M. A. (2018). Predicting credit card delinquencies: An application of deep neural networks. Intelligent Systems in Accounting, Finance and Management, 25(4), 174-189.
Fitzpatrick, Trevor & Mues, Christophe, 2016. An empirical comparison of classification algorithms for mortgage default prediction: evidence from a distressed mortgage market, European Journal of Operational Research, Elsevier, vol. 249(2), pages 427-439.
Huang, X., Liu, X., & Ren, Y. (2018). Enterprise credit risk evaluation based on neural network algorithm. Cognitive Systems Research, 52, 317-324.
Chi, G., Uddin, M. S., Abedin, M. Z., & Yuan, K. (2019). Hybrid Model for Credit Risk Prediction: An Application of Neural Network Approaches. International Journal on Artificial Intelligence Tools, 28(05), 1950017.
Barboza, Flavio & Kimura, Herbert & Altman, Edward. (2017). Machine Learning Models and Bankruptcy Prediction. Expert Systems with Applications. 83. 10.1016/j.eswa.2017.04.006.
https://www.sciencedirect.com/science/article/abs/pii/S0957417418301179(Predicting mortgage default using convolutional neural networks)

Graves, J. T., Acquisti, A., & Christin, N. (2018). Should Credit Card Issuers Reissue Cards in
Response to a Data Breach? Uncertainty and Transparency in Metrics for Data Security
Policymaking. ACM Transactions on Internet Technology (TOIT), 18(4), 1-19.
Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., & Bontempi, G. (2017). Credit card fraud
detection: realistic modeling and a novel learning strategy. IEEE transactions on neural
networks and learning systems, 29(8), 3784-3797.
Makki, S., Assaghir, Z., Taher, Y., Haque, R., Hacid, M. S., & Zeineddine, H. (2019). An
experimental study with imbalanced classification approaches for credit card fraud
detection. IEEE Access, 7, 93010-93022.
Kalid, S. N., Ng, K. H., Tong, G. K., & Khor, K. C. (2020). A Multiple Classifiers System for
Anomaly Detection in Credit Card Data with Unbalanced and Overlapped Classes. IEEE
Access, 8, 28210-28221.

Taha, A. A., & Malebary, S. J. (2020). An Intelligent Approach to Credit Card Fraud Detection
Using an Optimized Light Gradient Boosting Machine. IEEE Access, 8, 25579-25587.
Can, B., Yavuz, A. G., Karsligil, E. M., & Guvensan, M. A. (2020). A Closer Look into the
Characteristics of Fraudulent Card Transactions. IEEE Access, 8, 166095-166109.
Kundu, A., Panigrahi, S., Sural, S., & Majumdar, A. K. (2009). Blast-ssaha hybridization for
credit card fraud detection. IEEE transactions on dependable and Secure Computing,
6(4), 309-315.
Al-Khater, W. A., Al-Maadeed, S., Ahmed, A. A., Sadiq, A. S., & Khan, M. K. (2020).
Comprehensive Review of Cybercrime Detection Techniques. IEEE Access, 8, 137293-
137311.
Randhawa, K., Loo, C. K., Seera, M., Lim, C. P., & Nandi, A. K. (2018). Credit card fraud
detection using AdaBoost and majority voting. IEEE access, 6, 14277-14284.



Share This Post

Email
WhatsApp
Facebook
Twitter
LinkedIn
Pinterest
Reddit

Order a Similar Paper and get 15% Discount on your First Order

Related Questions

Obtain the general solution of the following DEs: i. y′′′ + y′′ − 4y′ + 2y = 0 ii. y(4) + 4y(2) = 0 iii. x(x − 2)y′′ + 2(x − 1)y′ − 2y = 0; use y1 = (1 − x) iv. y′′ − 4y = sin2(x) v. y′′ − 4y′ + 3y = x ; use y1 = e3x vi. y′′ + 5y′ + 6y = e2xcos(x) vii. y′′ + y = sec(x) tan(x)

Obtain the general solution of the following DEs: i. y′′′ + y′′ − 4y′ + 2y = 0 ii. y(4) + 4y(2) = 0 iii. x(x − 2)y′′ + 2(x − 1)y′ − 2y = 0; use y1 = (1 − x) iv. y′′ − 4y = sin2(x) v. y′′