Reflection and Discussion Forum Week 7 Reflection and Discussion Forum

 

Reflection and Discussion Forum Week 7

Reflection and Discussion Forum Week 7Assigned Readings:Chapter 8. Management of Product, Process, and Support DesignInitial Postings: Read and reflect on the assigned readings for the week. Then post what you thought was the most important concept(s), method(s), term(s), and/or any other thing that you felt was worthy of your understanding in each assigned textbook chapter.Your initial post should be based upon the assigned reading for the week, so the textbook should be a source listed in your reference section and cited within the body of the text. Other sources are not required but feel free to use them if they aid in your discussion.Also, provide a graduate-level response to each of the following questions:

  1. Henry Ford invented mass production. In doing so, he perfected the assembly line concept in which each worker does only one job or a handful of jobs and is given little other responsibility. This worked well for 70 years; however, it became apparent in the 1990s that an increasing number of U.S. companies could not produce a high-quality product by sticking to the assembly line model. What has changed?
  2. Discuss the risks involved in the project “buying a used car.” Develop a risk management plan for this project

 

Activity 7

Prepare a risk management plan for the project of finding a job after graduation. 

3pages

Share This Post

Email
WhatsApp
Facebook
Twitter
LinkedIn
Pinterest
Reddit

Order a Similar Paper and get 15% Discount on your First Order

Related Questions

Obtain the general solution of the following DEs: i. y′′′ + y′′ − 4y′ + 2y = 0 ii. y(4) + 4y(2) = 0 iii. x(x − 2)y′′ + 2(x − 1)y′ − 2y = 0; use y1 = (1 − x) iv. y′′ − 4y = sin2(x) v. y′′ − 4y′ + 3y = x ; use y1 = e3x vi. y′′ + 5y′ + 6y = e2xcos(x) vii. y′′ + y = sec(x) tan(x)

Obtain the general solution of the following DEs: i. y′′′ + y′′ − 4y′ + 2y = 0 ii. y(4) + 4y(2) = 0 iii. x(x − 2)y′′ + 2(x − 1)y′ − 2y = 0; use y1 = (1 − x) iv. y′′ − 4y = sin2(x) v. y′′